目的 解决点阵夹层结构等效性能快速求解,同时保证其精确性。方法 基于python语言对Abaqus进行二次开发,创建梁单元点阵快速建模程序,结合代表体元法,提出一种新的基于梁单元的点阵夹芯结构等效参数快速辨识方法。结果 通过理论研究与数值方法的比较,使用该方法后,点阵的等效热参数、力学参数等误差可以控制在1%以内。结论 点阵夹层结构性能预测,梁单元比杆单元更加精确。点阵性能预测的误差主要来源于各向异性和接触刚度。使用新的等效参数辨识方法,可以将误差控制在1%以内,为点阵夹芯结构的等效性能预测提供了一种新的解决方案。
Abstract
Lattice meta-materials are widely used in aerospace engineering due to their exceptional mechanical properties such as ultra-lightweight, high specific strength, and high specific stiffness. However, their large number of cells and small size make it difficult to generate the grid and require a large amount of calculation, which seriously restricts their application development. Traditional lattice design methods demonstrate a good prediction of the equivalent performance of the lattice itself, but ignore the contact stiffness problem between the skin and the lattice. The work aims to have a rapid solution of the equivalent performance of lattice sandwich structures while ensuring accuracy. A rapid beam-element lattice modeling program was developedthrough python-based secondary development of Abaqus, and a novel rapid identification method was proposed for equivalent parameters of lattice sandwich structures using beam elements combined with the representative volume element (RVE) method. The results demonstrated that through the comparison of theoretical research and numerical methods, after using this method, the errors of the equivalent thermal parameters, mechanical parameters, etc. of the lattice could be controlled within 1%.For the performance prediction of lattice sandwich structures, beam elements are more accurate than bar elements. The errors in lattice performance prediction mainly stem from anisotropy and contact stiffness. By using the new equivalent parameter identification method, the error can be controlled within 1%, providing a new solution for the equivalent performance prediction of lattice sandwich structures.
关键词
梁单元 /
等效性能 /
参数辨识 /
代表体元法
Key words
beam element /
equivalent performance /
parameter identification /
representative volume element
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许斌, 郝予琛, 杨海洋, 等. 防空导弹结构轻量化技术的发展与展望[J]. 空天防御, 2024, 7(3): 1-13.
XU B, HAO Y C, YANG H Y, et al.Development and Prospect of Lightweight Technology for Anti-Aircraft Missile Structures[J]. Air & Space Defense, 2024, 7(3): 1-13.
[2] 苏阳, 郝亮, 李扬欣, 等. 航空航天用高性能镁合金的研究进展[J]. 空天防御, 2024, 7(6): 1-11.
SU Y, HAO L, LI Y X, et al.Research and Development of High-Performance Magnesium Alloys for Aerospace Applications[J]. Air & Space Defense, 2024, 7(6): 1-11.
[3] 邓先溥, 班宝旺, 郄彦辉. 新型3D负泊松比多孔材料胞元的弹性性能研究[J]. 机械科学与技术, 2024, 43(1): 173-179.
DENG X B, BAN B W, QIE Y H.Study on Elastic Properties of Novel 3d Cellular Materials with Negative Poisson's Ratio[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(1): 173-179.
[4] 丛苏婷, 周一一, 陈联盟. 凹六边形负泊松比蜂窝结构及其静动力学性能研究综述[J]. 空间结构, 2024, 30(2): 21-31.
CONG S T, ZHOU Y Y, CHEN L M.Review on the Study of Concave Hexagonal Negative Poisson's Ratio Honeycomb Structures and Their Static and Dynamic Performance[J]. Spatial Structures, 2024, 30(2): 21-31.
[5] CHEN L Y, LIANG S X, LIU Y J, et al.Additive Manufacturing of Metallic Lattice Structures: Unconstrained Design, Accurate Fabrication, Fascinated Performances, and Challenges[J]. Materials Science and Engineering: R: Reports, 2021, 146: 100648.
[6] KHAN M K, BAIG T, MIRZA S.Experimental Investigation of In-Plane and Out-of-Plane Crushing of Aluminum Honeycomb[J]. Materials Science and Engineering: A, 2012, 539: 135-142.
[7] 蔡佳欣, 白静, 谢冲, 等. 增材制造加肋增强极小曲面点阵结构的等效弹性特性研究[J]. 航天制造技术, 2024(2): 1-6.
CAI J X, BAI J, XIE C, et al.Study on Equivalent Elastic Properties of Ribbed Minimal Surface Lattice Structures Based on Additive Manufacturing[J]. Aerospace Manufacturing Technology, 2024(2): 1-6.
[8] MEZA L R, DAS S, GREER J R. Strong, Lightweight,Recoverable Three-Dimensional Ceramic Nanolattices[J]. Science, 2014, 345(6202): 1322-1326.
[9] 王扬卫, 姜炳岳, 程兴旺, 等. 基于机器学习的梯度点阵材料优化设计[J]. 北京理工大学学报, 2023, 43(3): 311-319.
WANG Y W, JIANG B Y, CHENG X W, et al.Optimization Design of Graded Lattice Materials Based on Machine Learning[J]. Transactions of Beijing Institute of Technology, 2023, 43(3): 311-319.
[10] 吴凤和, 王超世, 孙迎兵, 等. 基于功能原理的Gyroid点阵结构塑性屈服强度[J]. 复合材料学报, 2024, 41(10): 5646-5656.
WU F H, WANG C S, SUN Y B, et al.Study on Plastic Yield Strength of Gyroid Lattice Structures Based on Functional Principleson[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5646-5656.
[11] ASHBY M F, BRÉCHET Y J M. Designing Hybrid Materials[J]. Acta Materialia, 2003, 51(19): 5801-5821.
[12] 朱春艳, 孙丹, 谭金强, 等. 基于等效模型的空间站大面积柔性太阳翼结构优化设计[J]. 空天防御, 2023, 6(2): 23-27.
ZHU C Y, SUN D, TAN J Q, et al.Structural Optimization Design of Space Station Flexible Solar Array Wing Based on Equivalent Model[J]. Air & Space Defense, 2023, 6(2): 23-27.
[13] CHRISTENSEN R M, LO K H.Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315-330.
[14] BENSOUSSAN A.Asymptotic Analysis for Periodic Structures[M]. Amsterdam: North-Holland Pub Co, 1978.
[15] PELLINEN T, HUUSKONEN-SNICKER E, ESKELINEN P, et al.Representative Volume Element of Asphalt Pavement for Electromagnetic Measurements[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(1): 30-39.
[16] CHENG G D, CAI Y W, XU L.Novel Implementation of Homogenization Method to Predict Effective Properties of Periodic Materials[J]. Acta Mechanica Sinica, 2013, 29(4): 550-556.
[17] ANDREASSEN E, ANDREASEN C S.How to Determine Composite Material Properties Using Numerical Homogenization[J]. Computational Materials Science, 2014, 83: 488-495.
[18] DONG G Y, TANG Y L, ZHAO Y F.A 149 Line Homogenization Code for Three-Dimensional Cellular Materials Written in Matlab[J]. Journal of Engineering Materials and Technology, 2019, 141: 011005.
[19] HASSANI B, HINTON E.A Review of Homogenization and Topology Opimization II—Analytical and Numerical Solution of Homogenization Equations[J]. Computers & Structures, 1998, 69(6): 719-738.
[20] DESHPANDE V S, FLECK N A, ASHBY M F.Effective Properties of the Octet-Truss Lattice Material[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1747-1769.
[21] YAN J, CHENG G D, LIU S T, et al.Comparison of Prediction on Effective Elastic Property and Shape Optimization of Truss Material with Periodic Microstructure[J]. International Journal of Mechanical Sciences, 2006, 48(4): 400-413.
[22] VAEZI M, SEITZ H, YANG S F.A Review on 3D Micro-Additive Manufacturing Technologies[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5): 1721-1754.
[23] ZHANG X, YAO J H, LIU B, et al.Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices that Overcome the Strength-Recoverability Trade-off[J]. Nano Letters, 2018, 18(7): 4247-4256.
[24] CAI Y W, XU L, CHENG G D.Novel Numerical Implementation of Asymptotic Homogenization Method for Periodic Plate Structures[J]. International Journal of Solids and Structures, 2014, 51(1): 284-292.